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We consider an optimal control problem on a finite time-interval for a three-sector

economic control object. We reduce the economic system to an optimal control problem

for a nonlinear system with coefficients independent of the control object state and find a

nonlinear synthesizing control based on the feedback principle and certain constraints on

control. The results obtained for the nonlinear system are used to construct the control

parameters in the mathematical model of a three-sector economic control object. We

find an optimal distribution between the labor and investment resources satisfying the

balance relations. Bibliography: 3 titles. Illustrations: 2 figures.

In [1, 2], Lagrange multipliers are used to study optimal control problems for technical systems

and the linearized system of an economic cluster. In this paper, we consider an economic system

and transform it to an optimal control problem for a class of nonlinear systems with coefficients

depending on the control object state.

We transform the nonlinear differential equation describing the original control system to

a system of linear structure, but with parameters depending on the state. Synthesizing the

control, we use the nonlinear quadratic functional which allows us to construct the Riccati

matrix equation with parameters independent of the control object state. This approach is a

basis of the synthesis of nonlinear optimal control systems. We propose a combined method

based on constructing a nonlinear feedback, which allows us to represent the sought control as a

synthesizing control depending on the state of the nonlinear system and current time. Moreover,

owing to this method, it is possible to take into account constraints on the control values.
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The results obtained for nonlinear systems are used to construct the control parameters of

a three-sector economic control object on a finite time interval. We note that the share of labor

and investment resources are variable in all the three economy sectors.

1 The Three-Sector Economic Control Object Model

We consider the optimal control problem for a three-sector economic control object model

consisting of the following sectors: i = 0 (material), i = 1 (fund-creator), i = 2 (consumer). The

mathematical model consists of the following three components [3]:

(a) three differential equations governing the dynamics of the capital-labor ratios

k̇i = −λiki + (si/θi)x1, ki(0) = k0i , λi > 0, i = 0, 1, 2, (1.1)

(b) three functions of Cobb–Douglas type specific output

xi = θiAik
αi
i , Ai > 0, 0 < αi < 1, i = 0, 1, 2, (1.2)

(c) three balance relations

s0 + s1 + s2 = 1, s0 � 0, s1 � 0, s2 � 0, (1.3)

θ0 + θ1 + θ2 = 1, θ0 � 0, θ1 � 0, θ2 � 0, (1.4)

(1− β0)x0 = β1x1 + β2x2, β0 � 0, β1 � 0, β2 � 0. (1.5)

Here, the state of the economic system (the capital-labor ratio) is described by the vector

(k0, k1, k2), (s0, s1, s2, θ0, θ1, θ2) is the control vector, (s0, s1, s2) indicates the share of sectors in

the distribution of investment resources, (θ0, θ1, θ2) indicates the share of sectors in the distri-

bution of labor resources, xi is the specific output (the number of products produced in the ith

sector per worker), βi is the direct material cost for production in the ith sector, i = 0, 1, 2. The

initial state of the system is characterized by k00, k
0
1, k

0
2, where k0i = ki(0) is the capital-labor

ratio for the ith sector, i = 0, 1, 2, at t = 0. Our goal is to transfer the nonlinear system from

its initial state to a desired state in a time interval [0, T ]. For the desired final state (ks0, k
s
1, k

s
2)

we take the equilibrium state of the system defined in [3] as follows:

ks1 =
(s1A1

λ1

) 1
1−α1 , ks0 =

s0θ1A1(k
s
1)

α1

λ0θ0
, ks2 =

s2θ1A1(k
s
1)

α1

λ2θ2
, (1.6)

where ksi , i = 0, 1, 2, depend on the control vector (s0, s1, s2, θ0, θ1, θ2) whose stationary values

(ss0, s
s
1, s

s
2, θ

s
0, θ

s
1, θ

s
2) were obtained in [3].

2 Statement of the Problem with Constraints on Control

We write the mathematical model (1.1) in the form

ẏ(t) = Ay(t) +BD(y)u(t) +B(D(y)−D(ks))vs, y(t0) = y0, t ∈ [t0, T ], (2.1)
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where

y1 = k1 − ks1, y2 = k2 − ks2, y3 = k0 − ks0,

u1 = s1 − vs1, u2 =
s2θ1
θ2

− vs2, u3 =
s0θ1
θ0

− vs3, vs1 = ss1,
ss2θ

s
1

θs2
= vs2,

ss0θ
s
1

θs0
= vs3,

f1(y1) = (y1 + ks1)
α1 , f2(y2) = (y2 + ks2)

α2 , f3(y3) = (y3 + ks0)
α0 ,

A =

⎛
⎝
−λ1 0 0

0 −λ2 0

0 0 −λ0

⎞
⎠ , B =

⎛
⎝
A1 0 0

0 A1 0

0 0 A1

⎞
⎠ ,

D(y) =

⎛
⎝
(y1 + ks1)

α1 0 0

0 (y1 + ks1)
α1 0

0 0 (y1 + ks1)
α1

⎞
⎠ , D(ks) =

⎛
⎝
(ks1)

α1 0 0

0 (ks1)
α1 0

0 0 (ks1)
α1

⎞
⎠ ,

The constants ks and vs are found from (1.6) in the stationary case and satisfy the algebraic

equation

Aks +BD(ks)vs = 0, (2.2)

where y = (y1, y2, y3)
∗ is the object state vector and u = (u1, u2, u3)

∗ is the control vector.

Using (2.1) and (1.3)–(1.5), we write the control object in the form

ẏ(t) = Ay(t) +BD(y)v(t), y(t0) = y0, t ∈ [t0, T ], (2.3)

where

v(t) ∈ V (t) = {v|γ1(t) � v(t)− (E −D−1(y)D(ks))vs � γ2(t), t ∈ [t0, T ], γ1, γ2 ∈ C[t0, T ]},
u(t) = v(t)− (E −D−1(y)D(ks))vs, g(u, y, s, θ) = 0.

Let the system (2.3) be controllable. The matrices A and B satisfy the controllability

condition, i.e., Rank [B,AB, . . . , An−1B] = n.

We consider the following functional depending on the control and state of the object:

J(u) =
1

2

T∫

t0

[y∗(t)Q(y)y(t) + v∗(t)Rv(t)]dt+
1

2
y∗(T )Fy(T ), (2.4)

where Q(y) = KBD(y)R−1D∗(y)B∗K−KBD(ks)R−1D∗(ks)B∗K+Q1 is a positive semidefinite

matrix and R, D(y), F are positive definite matrices.

We study the problem of finding a synthesizing control v(y, t) moving the system (2.1) from

the initial state y(t0) = y0 to the desired equilibrium state y(T ) = 0 in the time interval [t0, T ]

and minimizing the functional (2.4).

3 Solution of the Problem with Constraints on Control

To the expression for the functional (2.4) we add the system of differential equations (2.3)

with factor λ = Ky + q(t) and the expression

λ∗
1(t)[γ1 − u(t)] + λ∗

2(t)[u(t)− γ2] + λ∗
3(t)[y(t)−W (t, T )q(t)], (3.1)
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where λ1 � 0, λ2 � 0. As a result, we obtain the functional

L(y, v) =

T∫

t0

{1

2
y∗(t)Q(y)y(t) +

1

2
v∗(t)Rv(t) + (Ky + q(t))∗(Ay +BD(y)v(t)− ẏ)

+ λ∗
1(t)[γ1 − u(t)] + λ∗

2(t)[u(t)− γ2] + λ∗
3(t)[y(t)−W (t, T )q(t)]

}
dt

+
1

2
y∗(T )Fy(T ), (3.2)

where q(t) is a vector and K is a constant symmetric positive definite (n× n)-matrix.

For the problem under consideration the release principle is to reduce the original opti-

mal control problem with constraints to an optimal control problem without constraints, but

possessing a solution coinciding with the solution to the original problem [1, 2]. We set

V (y, t) =
1

2
y∗Ky + y∗q(t), (3.3)

M(y, v, t) =
1

2
y∗Q(y)y +

1

2
v∗Rv + (Ky + q(t))∗(Ay(t) +BD(y)v(t)) + y∗q̇(t)

+ λ∗
1(t)[γ1 − u(t)] + λ∗

2(t)[u(t)− γ2] + λ∗
3(t)[y(t)−W (t, T )q(t)]. (3.4)

Then the functional (3.2) can be written as

L(y, u) = V (y0, t0) +

T∫

t0

M(y, u, t)dt− V (y(T ), T ) +
1

2
y∗(T )Fy(T ). (3.5)

The sought control is found from the equality

R(u+ (E −D−1(y)Ds)vs) = −D∗B∗(Ky + q(t))− (λ2 − λ1), (3.6)

where the matrices K, W (t, T ) and vector q(t) satisfy the differential equations

KA+A∗K −KBD(ks)R−1D∗(ks)B∗K +Q1 = 0, (3.7)

Ẇ = WA∗
1(y, t) +A1(y, t)W −B1(y), W (T, T ) = (F −K)−1, F � K, (3.8)

q̇ = −A∗
1(y, t)q +W−1(t, T )BDϕ(y, t), q(T ) = (F −K)y(T ) (3.9)

for t ∈ [t0, T ], where

A1(y, t) = A−B1(y)K(t), B1(y) = BD(y)R−1D∗(y)B∗,

ϕ(y, t) = R−1[λ1(y, t)− λ2(y, t)],
(3.10)

λ1(y, t) = Rmax{0; γ1 − ω(y, t)} � 0, λ2(y, t) = Rmax{0;ω(y, t)− γ2} � 0,

ω(y, t) = −(E −D−1(y)Ds)vs −R−1D∗(y)B∗(Ky + q(t)), Ds = D(ks).
(3.11)

Assume that Equations (3.7), (3.8) are solvable. Then the differential equations defining the

motion law for the system can be written as

ẏ = A1(y, t)y(t)−BD(y)R−1D∗(y)B∗q(t) +BD(y)ϕ(y, t), y(t0) = y0. (3.12)
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We note that the initial condition for (3.9) is obtained from the equality

y(t) = W (t, T )q(t), t ∈ [t0, T ]. (3.13)

We formulate the results for the optimal control problem (2.1)–(2.4).

Theorem 3.1. Assume that Q(y) is a positive semidefinite matrix, R, F , D(y) are positive

definite matrices for t0 � t � T , and W0 = W (t0, T ) is a positive definite matrix. We assume

that the system (2.3) is completely controllable at t0. Then for the optimality of (y(t), u(t)) in

the problem (2.3), (2.4) the following conditions are sufficient:

1) y(t) satisfies the differential equation

ẏ = A1(y, t)y(t)−B1(y)q(t) +BD(y)ϕ(y, t), y(t0) = y0, (3.14)

2) the control is defined by

u(y, t) = −(E −D−1(y)Ds)vs)−R−1D∗(y)B∗(Ky + q(t)) + ϕ(y, t). (3.15)

The matrices K and W (t, T ) are solutions to Equations (3.7) and (3.8), the function q(t) sat-

isfies the differential equation (3.9), and the vector-valued function ϕ(y(t), t) is defined by (3.10).

4 Algorithm

We describe an algorithm for solving the optimal control problem (2.1)–(2.4). This algorithm

is convenient for implementation on a computer.

1. Solve the system of algebraic and differential equations (3.7) and (3.8) to obtain the

matrices K and W (t, T ) on [t0, T ].

2. Impose the condition y(t0) = y0 and compute q(t0) = W−1(t0, T )y(t0).

3. Integrate the system (3.12), (3.9) on [t0, T ] with the initial conditions y(t0) = y0, q(t0) =

W−1(t0, T )y(t0) and print the graphs of optimal trajectory y(t) and optimal control u(t) .

4. Under the assumption that the state y(t) and optimal control u(t) are already found, we

have

u(t) = v(t)− (E −D−1(y)D(ks))vs,

f1(y1) = (y1 + ks1)
α1 , f2(y2) = (y2 + ks2)

α2 , f3(y3) = (y3 + ks0)
α0 ,

ξ =
β1A1f1(y1) + β2A2f2(y2)(1− u1 − vs1)/(u2 + vs2)

(1− β0)A0f3(y3)(1− u1 − vs1)/(u3 + vs3) + β2A2f2(y2)(1− u1 − vs1)/(u2 + vs2)
, (4.1)

which implies (1.5),

s1 = u1 + vs1, s2 = (1− ξ)(1− u1 − vs1), s0 = ξ(1− u1 − vs1), (4.2)

which implies (1.3),

θ1 =
1

1 + s0/(u3 + vs3) + s2/(u2 + vs2)
, θ2 =

(1− ξ)(1− s1)θ1
(u2 + vs2)

, θ0 =
ξ(1− s1)θ1
(u3 + vs3)

, (4.3)

which implies (1.4).
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5 Numerical Experiment of Finding Optimal Distribution
of Labor and Investment Resources

The numerical experiment was performed for the following values of parameters:

i αi βi λi Ai ssi θsi ksi
0 0.46 0.39 0.05 6.19 0.2763 0.3944 966.4430

1 0.68 0.29 0.05 1.35 0.4476 0.2562 2410.1455

2 0.49 0.52 0.05 2.71 0.2761 0.3494 1090.1238

We solve the optimal control problem with the initial state

y(t0) = (−700, −300, 300)∗, (5.1)

and matrices

R =

⎛
⎝
200 0 0

0 200 0

0 0 200

⎞
⎠ , Q1 =

⎛
⎝
16 · 10−4 0 0

0 8 · 10−4 0

0 0 8 · 10−4

⎞
⎠ ,

K =

⎛
⎝
0.1968 · 10−2 0 0

0 0.1354 · 10−2 0

0 0 0.1354 · 10−2

⎞
⎠ .

The results of calculations of the state of the system are presented in Figure 1 (a). Figure 1

(b) shows that the optimal controls do not go beyond the domain V defined by the constraints.

In the case under consideration, the constraints are given by

−0.45 � u1 � 0.45, −0.1 � u2 � 0.8, −0.15 � u3 � 0.75. (5.2)

Here, the control components u1(t) and u3(t) lie on the boundary of V during the time intervals

[0, t1] and [0, t2] respectively, but for t ∈ [t1, T ] and t ∈ [t2, T ], they lie inside the domain V .

The controls u1(t) and u3(t) are switched at the times t1 = 1.553 and t2 = 4.314 respectively.

(a) (b)

Figure 1. The graphs of trajectories y(t) (a) and the optimal control u(t) (b).
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We write the optimal values of the state at a finite time for T = 20:

y1(T ) = −0.7292 · 10−4, y2(T ) = −0.2731 · 10−2, y3(T ) = 0.6313 · 10−2

and the optimal values of the control at a finite time for T = 20:

u1(T ) = 6.5097 · 10−7, u2(T ) = 0.2432 · 10−4, u3(T ) = −0.5620 · 10−4.

Using (4.1)–(4.3), we find the optimal distribution of the labor (θ1(t), θ2(t), θ0(t)) and

investment (s1(t), s2(t), s0(t)) resources. Figure 2 shows changes in the resources satisfying the

balance relations (1.3)–(1.5).

(a) (b)

Figure 2. The graphs of the optimal distribution of investment (a) and labor (b) re-

sources satisfying the balance relations (1.3)–(1.5).

The values of the investment (s1(t), s2(t), s0(t)) and the labor resources (θ1(t), θ2(t), θ0(t))

at a finite time for T = 20 converge to the stationary state with the approximation estimates

|s1(T )− ss1| = 0.6510 · 10−6, |s2(T )− ss2| = 0.1017 · 10−3, |s0(T )− ss0| = 0.1024 · 10−3,

|θ1(T )− θs1| = 0.1430 · 10−4, |θ2(T )− θs2| = 0.2386 · 10−4, |θ0(T )− θs0| = 0.3816 · 10−4.
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