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CONSTRUCTION OF CONTROL WITH CONSTRAINTS
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DEPENDING ON THE CONTROL OBJECT STATE
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We consider an optimal control problem on a finite time-interval for a three-sector
economic control object. We reduce the economic system to an optimal control problem
for a nonlinear system with coefficients independent of the control object state and find a
nonlinear synthesizing control based on the feedback principle and certain constraints on
control. The results obtained for the nonlinear system are used to construct the control
parameters in the mathematical model of a three-sector economic control object. We
find an optimal distribution between the labor and investment resources satisfying the
balance relations. Bibliography: 3 titles. Illustrations: 2 figures.

In [1, 2], Lagrange multipliers are used to study optimal control problems for technical systems
and the linearized system of an economic cluster. In this paper, we consider an economic system
and transform it to an optimal control problem for a class of nonlinear systems with coefficients
depending on the control object state.

We transform the nonlinear differential equation describing the original control system to
a system of linear structure, but with parameters depending on the state. Synthesizing the
control, we use the nonlinear quadratic functional which allows us to construct the Riccati
matrix equation with parameters independent of the control object state. This approach is a
basis of the synthesis of nonlinear optimal control systems. We propose a combined method
based on constructing a nonlinear feedback, which allows us to represent the sought control as a
synthesizing control depending on the state of the nonlinear system and current time. Moreover,
owing to this method, it is possible to take into account constraints on the control values.
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The results obtained for nonlinear systems are used to construct the control parameters of
a three-sector economic control object on a finite time interval. We note that the share of labor
and investment resources are variable in all the three economy sectors.

1 The Three-Sector Economic Control Object Model

We consider the optimal control problem for a three-sector economic control object model
consisting of the following sectors: i = 0 (material), ¢ = 1 (fund-creator), i = 2 (consumer). The
mathematical model consists of the following three components [3]:

(a) three differential equations governing the dynamics of the capital-labor ratios

ki = —Nk; + (Si/ei).%'l, kZ(O) = k?, AN>0, 1=0,1,2, (1.1)
(b) three functions of Cobb-Douglas type specific output
T; = QzAZ/{?;l’, Az >0, O<a< 1, = 0, 1,2, (1.2)

(c) three balance relations

so+s1+sa=1, s90=20, s12>20, s902>0, (1.3)
Op+01+60:=1, 0p=0, 6:>0, 6,>0, (1.4)
(1= pBo)zo = Brx1 + Pax2, Po =0, B =0, B2>0. (1.5)

Here, the state of the economic system (the capital-labor ratio) is described by the vector
(ko, k1, k2), (s, s1, S2,00, 61,02) is the control vector, (sp, s1, s2) indicates the share of sectors in
the distribution of investment resources, (g, 61, 602) indicates the share of sectors in the distri-
bution of labor resources, z; is the specific output (the number of products produced in the ith
sector per worker), 3; is the direct material cost for production in the ith sector, i = 0,1,2. The
initial state of the system is characterized by kJ, k9, k9, where k¥ = k;(0) is the capital-labor
ratio for the ith sector, ¢ = 0,1,2, at ¢t = 0. Our goal is to transfer the nonlinear system from
its initial state to a desired state in a time interval [0, T]. For the desired final state (k{, kf, k3)
we take the equilibrium state of the system defined in [3] as follows:
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where k7, i = 0, 1,2, depend on the control vector (sg, s1, 52,60, 01,62) whose stationary values
(s, s7,s5,05,07,05) were obtained in [3].

2 Statement of the Problem with Constraints on Control
We write the mathematical model (1.1) in the form

y(t) = Ay(t) + BD(y)u(t) + B(D(y) — D(k*))v*,  y(to) = o, t € [to, T], (2.1)



where

y1 =k — ki, y2=ko—k3, ys3=ko— kg,

Ul — 51 — S Uo — 5201 8 Us — s001 _ 8 VS = §° Sgef _ s 889‘; s
1 — 91 15 2 — 92 2 3 = 90 3 1 — 21> 05 — U9, 98 — U3,
filyr) = (yn + KD, fay2) = (y2 + k3)*%, f3(ys) = (ys + k)™,
-\ 0 0 Ay 0 O
A= 0 =X 0 , B=10 A 0|,
0 0 *)\0 0 0 Al
(y1 + k)™ 0 0 (k)™ 0 0
D(y) = 0 (y1 + k7)™ 0 , D)= 0 (k)™ 0 [,
0 0 (y1 + ki)™ 0 0 (k)™

The constants k* and v*® are found from (1.6) in the stationary case and satisfy the algebraic
equation
Ak® + BD(k%)v® =0, (2.2)

where y = (y1,y2,y3)* is the object state vector and u = (u1, ug,u3)* is the control vector.
Using (2.1) and (1.3)—(1.5), we write the control object in the form

y(t) = Ay(t) + BD(y)v(t), y(to) =wyo, tE€ [to,T], (2.3)
where
u(t) € V() = {vln(t) < o(t) = (B = D™ y)D(k*))v* < (t), ¢ € [to, T], m,72 € Clto, T},
u(t) = v(t) = (B = D~ y)D(k*)v®,  g(u,y,s,0) =0.

Let the system (2.3) be controllable. The matrices A and B satisfy the controllability
condition, i.e., Rank [B, AB, ..., A" 'B] = n.

We consider the following functional depending on the control and state of the object:

T
Iw) =5 [0 OQ® + v O Re@)dt + 50° (T)IFY(T), (24)

where Q(y) = KBD(y)R™1D*(y)B*K — K BD(k*) R~ D*(k*) B* K + Q1 is a positive semidefinite
matrix and R, D(y), F are positive definite matrices.

We study the problem of finding a synthesizing control v(y,t) moving the system (2.1) from
the initial state y(t9) = yo to the desired equilibrium state y(7") = 0 in the time interval [to, T
and minimizing the functional (2.4).

3 Solution of the Problem with Constraints on Control

To the expression for the functional (2.4) we add the system of differential equations (2.3)
with factor A = Ky + ¢(t) and the expression

AT = u(®)] + A3 () [u(t) — 2] + A3(B) [y () — W(E T)q(8)], (3.1)



where A1 > 0, Ao > 0. As a result, we obtain the functional
T

1 1

Lly,v) = / {Qy*(t)Q(y)y(t) + v (O Ru(t) + (Ky +q(t))"(Ay + BD(y)v(t) - 9)

+ A1) — w®)] + A (@) [u(t) — 2] + A3(D)[y(t) — W(E, T)Q(t)]}dt

5y (DFy(T) (32)

where ¢(t) is a vector and K is a constant symmetric positive definite (n x n)-matrix.

For the problem under consideration the release principle is to reduce the original opti-
mal control problem with constraints to an optimal control problem without constraints, but
possessing a solution coinciding with the solution to the original problem [1, 2]. We set

1 * *
V(y,t) = SV Ey+y q(t), (3.3)

M(y,v.1) = 5" Q) + 5v Ro -+ (Ky +4(1))" (Ay(t) + BD()o(0)) +y7i(1)

+ A1) = u(@)] + A (B)[u(t) —v2] + A3@)[y(t) — W(E, T)q(t)]- (3-4)

Then the functional (3.2) can be written as

T
1,
to
The sought control is found from the equality
R(u+ (E — D™ (y)Ds)vs) = =D*B*(Ky + q(t)) — (A2 = A1), (3.6)

where the matrices K, W (t,T) and vector ¢(t) satisfy the differential equations

KA+ A*K — KBD(k*)R™'D*(k*)B*K + Q, = 0, (3.7)
W =WAi(y,t)+ A(y, )W — Bi(y), W(T,T)=(F—-K)™!, F>K, (3.8)
g =—Ai(y,t)g+ W (t,T)BDg(y,t), q(T)= (F—K)y(T) (3.9)

for t € [tg, T], where
Ai(y,t) = A— Bi(y)K(t), Bily) = BD(y)R"'D*(y)B",
ey, t) = R (v, t) — Xa(y, t)],

Al(yvt) = RmaX{O; 71— W(y,t)} = 0, AQ(yvt) - RmaX{O;w(y,t) - 72} = 0,

(3.10)

(3.11)
w(y,t) = —(E — D' (y)Ds)vs — R™'D*(y)B*(Ky + q(t)), D, = D(k*).

Assume that Equations (3.7), (3.8) are solvable. Then the differential equations defining the
motion law for the system can be written as

i = Ai(y,t)y(t) — BD(y)R~'D*(y)B*q(t) + BD(y)¢(y,t), y(to) = vo. (3.12)



We note that the initial condition for (3.9) is obtained from the equality
y(t) =W(t,T)q(t), tE€ [to,T]. (3.13)

We formulate the results for the optimal control problem (2.1)—(2.4).

Theorem 3.1. Assume that Q(y) is a positive semidefinite matriz, R, F', D(y) are positive
definite matrices for to < t < T, and Wy = W (ty,T) is a positive definite matriz. We assume
that the system (2.3) is completely controllable at ty. Then for the optimality of (y(t),u(t)) in
the problem (2.3), (2.4) the following conditions are sufficient:

1) y(t) satisfies the differential equation
g = Ay, t)y(t) — Bi(y)g(t) + BD(y)e(y, 1),  y(to) = vo, (3.14)

2) the control is defined by

u(y,t) = —(E — D~ (y)Ds)vs) — R~"D*(y) B*(Ky + q(t)) + ¢(y, t). (3.15)

The matrices K and W (¢, T) are solutions to Equations (3.7) and (3.8), the function ¢(t) sat-
isfies the differential equation (3.9), and the vector-valued function ¢(y(t),t) is defined by (3.10).

4 Algorithm

We describe an algorithm for solving the optimal control problem (2.1)—(2.4). This algorithm
is convenient for implementation on a computer.

1. Solve the system of algebraic and differential equations (3.7) and (3.8) to obtain the
matrices K and W (¢t,T) on [to, T].

2. Impose the condition y(t) = yo and compute q(tg) = Wt (to, T)y(to)-

3. Integrate the system (3.12), (3.9) on [tg, 7] with the initial conditions y(to) = yo, q(to) =
W~(ty, T)y(to) and print the graphs of optimal trajectory y(¢) and optimal control u(t) .

4. Under the assumption that the state y(¢) and optimal control u(t) are already found, we
have

u(t) = v(t) — (E — D~ (y) D(k*))v®,
filyr) = (yr + kDY, falyz) = (Y2 + k3)%2, f3(ys) = (ys + k§)™,
BirALf1(y1) + BaAafo(y2) (1 — ur — v])/(uz + v3)

T T B AT )~ — o)/ (s + ) + B (1 — v — D[ 7o) )
which implies (1.5),
si=up+v, s2=(1-&1—u—07), so=~E1—u —7), (4.2)
which implies (1.3),
91 1 02: (1—5)(1—81)91’ 90: 5(1—31)917 (43)

- 1+ so/(ug + v§) + sa/(ug +v§)’ (ug + v§) (ug + v§)

which implies (1.4).



5 Numerical Experiment of Finding Optimal Distribution
of Labor and Investment Resources

The numerical experiment was performed for the following values of parameters:

0 0.46 0.39 0.05 6.19 0.2763 0.3944 966.4430
1 0.68 0.29 0.05 1.35 0.4476 0.2562 2410.1455
2 0.49 0.52 0.05 2.71 0.2761 0.3494 1090.1238
We solve the optimal control problem with the initial state
y(to) = (=700, 300)", (5.1)
and matrices
200 0 0 16-10~4 0
R=|[ 0 200 0 Q= 8.1074 0 ,
0 0 200 8.10%
0.1968 - 102 0
K = 0 0.1354 - 102 0
0 0.1354 - 102

The results of calculations of the state of the system are presented in Figure 1 (a). Figure 1
(b) shows that the optimal controls do not go beyond the domain V' defined by the constraints.
In the case under consideration, the constraints are given by

—0.45 < uy < 0.45,

—0.1 < us < 0.8,

—0.15 < ug < 0.75.

(5.2)

Here, the control components u;(¢) and us(t) lie on the boundary of V' during the time intervals
[0,%1] and [0, t2] respectively, but for ¢ € [t1,T] and t € [ta,T], they lie inside the domain V.
The controls u;(t) and us(t) are switched at the times ¢t; = 1.553 and to = 4.314 respectively.
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Figure 1. The graphs of trajectories y(t) (a) and the optimal control u(t) (b).



We write the optimal values of the state at a finite time for T" = 20:

y1(T) = —0.7292 - 1074, 4o(T) = —0.2731 - 1072,

y3(T) = 0.6313 - 102

and the optimal values of the control at a finite time for T" = 20:

uy (T) = 6.5097 - 1077, un(T) = 0.2432 - 1074,

uz(T) = —0.5620 - 10~

Using (4.1)—(4.3), we find the optimal distribution of the labor (01(t), 62(t), 6o(t)) and
investment (s1(t), sa(t), so(t)) resources. Figure 2 shows changes in the resources satisfying the

balance relations (1.3)—(1.5).
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Figure 2. The graphs of the optimal distribution of investment (a) and labor (b) re-

sources satisfying the balance relations (1.3)—(1.5).

The values of the investment (s1(t), sa(t), so(t)) and the labor resources (6 (t), 62(t), 6o(t))
at a finite time for T' = 20 converge to the stationary state with the approximation estimates
|s1(T) — s§| = 0.6510 - 1076, [so(T) — s3] = 0.1017 - 1073, [so(T) — s§| = 0.1024 - 1073,

01(T) — 05| = 0.1430 - 1074, |02(T) — 05| = 0.2386 - 1074, |0o(T) — 6] = 0.3816 - 10~ 4.
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